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1. INTRODUCTION

The Competition on Cells Classification by Fluorescent Im-

age Analysis is hosted by the 20th IEEE International Confer-

ence on Image Processing (ICIP), which is the premier forum

for the presentation of technological advances and research

results in the fields of theoretical, experimental, and applied

image and video processing. ICIP is held during September

15-18, 2013 in Melbourne, Australia. This competition is the

continuation of the previous event held at International Con-

ference on Pattern Recognition (ICPR) 2012 [1].

1.1. Motivation

The contest focuses on the classification of cells extracted

from Indirect Immunofluorescence (IIF) images. The IIF is

the hallmark protocol for identifying autoimmune diseases

such as Systemic Lupus Erythematosus, Sjorgren’s syndrome,

and Rheumatoid Arthritis [2, 3]. IIF uses the human larynx

carcinoma (HEp-2) substrate, which bonds with serum an-

tibodies forming a molecular complex. This complex then

reacts with human immunoglobulin conjugated with a fluo-

rochrome and becomes observable at the fluorescence micro-

scope where it reveals the antigen-antibody reaction. Unfor-

tunately, the IIF approach is labour intensive and time con-

suming [2,3]. As such, there is a growing interest of using

Computer Aided Diagnosis (CAD) systems to overcome such

shortcomings.

The interest toward the realization of Computer Aided Di-

agnosis is witnessed by the growing number of papers propos-

ing algorithms for the analysis of IIF images [4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Thus, an impor-

tant issue regards the definition of reliable classification algo-

rithms, and the comparison of their performance on common

datasets.

The competition is an international collaboration between

the University of Salerno (Italy), the University of Queens-

land (Australia) and Sullivan Nicolaides Pathology (SNP) -

Queensland Medical Testing Laboratory, (Australia). The in-

volvement of the SNP, a relevant laboratory that offers high

qualified pathology services for doctors, private hospitals and

*Indicates equal contribution

nursing homes in Queensland northern New South Wales and

Darwin, allowed to obtain a significant and valuable dataset

that will be used for the contest.

1.2. Comparison to the previous competition

This collaboration has resulted a significant achievement

made by the competition. Compared to the previous compe-

tition, the number of data samples are significantly larger:

1,457 images for ICPR2012
1

versus 68,429 image for

ICIP2013. The dataset also introduces two cell patterns

less frequent occurring in everyday clinical scenario (i.e. nu-

clear membrane and golgi). These patterns offer a more

realistic evaluation on CAD systems as in clinical scenarios

it is needed to make decision upon both frequent occurring

and less/rarely occurring cell patterns. Furthermore, having a

large dataset enables us to evaluate the systems robustness to

within-class and between-class pattern variations.

2. CLASSIFICATION TASK

Each participant is given a task to develop a classifier ϕ
which classifies a set of HEp-2 cell images. Each image

is represented by three-tuple (I,M , δ) [20] : (1) I repre-

sents the cell fluorescence image; (2) M is the cell mask

which is automatically extracted and (3) δ represents the cell

positivity strength which has two values weak/borderline or

strong. Let Y be a probe image, � be its class label and

G = {(I,M , δ)1, ...(I,M , δ)n} be a given gallery set. The

classifier’s task is to predict the probe label, �̂. In other words,

ϕ : Y × G �→ �̂, where ideally �̂ = �.

3. DATASET

The dataset was obtained between 2011 and 2013 at Sulli-

van Nicolaides Pathology laboratory, Australia
2
. The dataset

contains the following six classes (see Fig. 1 for some exam-

ples): [3]

1
The dataset is available for download at http://mivia.unisa.

it/contest-hep-2/
2
We name this dataset as ICIP2013 dataset

2

http://mivia.unisa.it/contest-hep-2/
http://mivia.unisa.it/contest-hep-2/
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Fig. 1. Sample images from ICIP2013 dataset.

• homogeneous: a uniform diffuse fluorescence covering
the entire nucleoplasm sometimes accentuated in the
nuclear periphery;

• speckled: these patterns have two sub-categories 3:

– coarse speckled: densely distributed, variously
sized speckles, generally associated with larger
speckles, throughout nucleoplasm of interphase
cells; nucleoli are negative;

– fine speckled: fine speckled staining in a uniform
distribution, sometimes very dense so that an al-
most homogeneous pattern is attained; nucleoli
may be positive or negative;

• nucleolar: brightly clustered large granules corre-
sponding to decoration of the fibrillar centers of the
nucleoli as well as the coiled bodies;

• centromere: rather uniform discrete speckles located
throughout the entire nucleus;

• golgi: staining of a polar organelle adjacent to and
partly surrounding the nucleus, composed of irregular
large granules. Nuclei and nucleoli are negative. Dif-
fuse staining of the cytoplasm of dividing cells some-
times with accentuation around chromosomal material;

• nuclear membrane: a smooth homogeneous ring-like
fluorescence of the nuclear membrane in interphase
cells.

The dataset utilises 419 patient positive sera which were
prepared on the 18-well slide of HEP-2000 IIF assay from
Immuno Concepts N.A. Ltd. with screening dilution 1:80.
The specimens were then automatically photographed using
a monochrome high dynamic range cooled microscopy cam-
era which was fitted on a microscope with a plan-Apochromat
20x/0.8 objective lens and an LED illumination source. Ap-
proximately 100-200 cell images were extracted from each
patient serum. In total there were 68,429 cell images ex-
tracted. We divided these into 13,596 images for training and
54,833 for testing.

3In this dataset, we consider these two sub-categories as one category.

The labeling process involved at least two scientists who
read each patient specimen under a microscope. A third ex-
pert’s opinion was sought to adjudicate any discrepancy be-
tween the two opinions. We used each specimen label for the
groundtruth of cells extracted from it. Furthermore, all the
labels were validated by using secondary tests such as ENA,
and anti-ds-DNA to confirm the presence and/absence of spe-
cific patterns.

3

4. PARTICIPATIO N

The competition received more than 100 registrations from
around the world with 14 submissions.

In the following we report the members and affiliations
of all the teams that participated to the Competition on Cells
Classification by Fluorescent Image Analysis. We refer to
each method using the name of the corresponding author of
the software submission.

CHANDRAN: V.Chandran, J. Banks, B. Chen, I. To eo-
Reyes Queensland UniversityofTechnology,Australia .HAN:
X. Han, J. Wang, Y. Chen, Ritsumeikan University, Japan .
KAZANOV: G.V.Ponomarev, M.S. Gelfand, M.D. Kazanov,
Ins ti tute for I nformation Transmissio n Prob lems, R ussia .
MAREE: R. M aré e, University of Lie`ge,Belgium. NANNI:
L. Nanni1, M. Paci2,3, J. Hyttinen2,3, S. Severi4, 1University
of Padua, Ital y, 2 Tam pe re Unive rsity of Techn o log y, Fin-
land, 3 Bio M e d i Te ch, Finl and, 4 U n iversi ty of B o log n a , Italy.
PAISITKRIANGKRAI: S. Paisitkriangkrai, R. Hill, C. Shen,
A. den Hengel, University of Adelaide, Australia    . POM-
PONIU: V. Pomponiu, H. Hariharan, University of Pitts-
burgh, USA. SARRAFZADEH: O. Sarrafzadeh, H. Rab-
ba ni, Isfahan University of Medical Sciences, Iran . SHEN:
L. Shen, J. Lin, S. Yu, ShenzhenUniversity, China . STOK-
LASA: R. Stoklasa, Masaryk University, Czech Republic.
THEODORAKOPOULOS: I. Theodorakopoulos, D. Kas-
taniotis, University of Patras, Greece. THIBAULT: G.
Thibault, Oregon Health& ScienceUniversity, USA .VESTER-
GAARD: A.B.L. Larsen, J.S. Vestergaard, R. Larsen, Techni-
ca l University of D e nm ark , D en m a rk. ZHANG: L. Liu1, J.
Zhang2, L. Wang2, 1Australian National University, Aus-
tralia, 2 University of Wollongong, Au stra li a.



Fig. 2. The cell recognition accuracy obtained by the considered methods over the test set.

5. EXPERIMENTAL RESULTS

The adopted experimental protocol was the following. Each

participant received the training set with the original images

of the automatically segmented cells. In particular, for each

cell we provided the bounding box and the foreground mask.

The cells were provided along with the information about the

intensity pattern and the ID of the image they belong to.

The participants used the training set to tune their HEp-

2 cells classification system and then they released the exe-

cutable for the independent evaluation on the test set. It is

worth noting that information about the ID of the image the

cell belongs to was provided to the participants only for the

images of the training set. This information is useful during

the tuning phase of the system in order to avoid putting some

cells belonging to the same image within both the training and

the validation set which could cause to overestimate the real

accuracy.

Finally, we ran all the submitted executables on the test set

collecting the results that are reported forward. In particular,

in Figure 2 we plot the cells recognition accuracy attained

by each method on both the training and the test sets, while

in Tables 1-14, we report the confusion matrices of all the

methods on the test set.
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Table 1. Confusion matrix for the CHANDRAN’s algorithm.
% Centromere Homogeneous Nucleolar Speckled Nuclear membrane Golgi

Centromere 85.99 2.54 0.48 3.44 2.63 4.93
Homogeneous 0.72 88.30 0.53 4.04 6.13 0.28

Nucleolar 50.32 10.23 9.49 3.97 21.46 4.54
Speckled 16.57 45.72 1.84 17.22 10.14 8.51
NuMem 19.45 24.52 3.91 1.61 49.97 0.54

Golgi 25.58 33.18 0.53 0.00 34.20 6.51

Table 2. Confusion matrix for the HAN’s algorithm.
% Centromere Homogeneous Nucleolar Speckled Nuclear membrane Golgi

Centromere 88.13 1.14 3.44 5.47 0.95 0.89
Homogeneous 2.71 44.79 5.67 13.83 31.71 1.27

Nucleolar 8.22 4.74 52.72 7.75 22.58 4.00
Speckled 20.05 15.55 3.22 51.70 8.90 0.57
NuMem 6.03 7.98 17.99 7.71 57.36 2.93

Golgi 1.35 11.44 36.11 0.62 17.17 33.31

Table 3. Confusion matrix for the KAZANOV’s algorithm.
% Centromere Homogeneous Nucleolar Speckled Nuclear membrane Golgi

Centromere 93.35 0.13 2.12 3.58 0.26 0.56
Homogeneous 0.36 68.66 5.40 10.76 12.78 2.05

Nucleolar 1.31 1.70 88.69 2.11 3.92 2.28
Speckled 14.84 16.22 2.57 61.24 3.81 1.33
NuMem 0.34 4.71 2.24 3.21 86.70 2.79

Golgi 0.89 9.08 10.29 3.29 22.33 54.13

Table 4. Confusion matrix for the MAREE’s algorithm.
% Centromere Homogeneous Nucleolar Speckled Nuclear membrane Golgi

Centromere 94.65 0.05 1.92 2.94 0.34 0.10
Homogeneous 0.24 72.63 4.44 12.86 9.30 0.51

Nucleolar 3.01 0.95 91.08 3.31 1.09 0.56
Speckled 20.87 10.98 3.02 61.47 3.40 0.26
NuMem 0.11 4.51 1.16 2.39 90.95 0.89

Golgi 0.36 6.05 8.78 0.85 15.23 68.73
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Table 5. Confusion matrix for the NANNI’s algorithm.
% Centromere Homogeneous Nucleolar Speckled Nuclear membrane Golgi

Centromere 92.59 0.17 3.43 3.08 0.23 0.50
Homogeneous 0.67 66.29 6.04 11.14 14.44 1.42

Nucleolar 0.86 1.82 92.45 1.41 3.03 0.42
Speckled 14.41 12.26 2.65 67.01 3.28 0.38
NuMem 0.34 2.41 2.19 1.67 89.56 3.82

Golgi 0.56 7.43 10.59 0.66 25.95 54.82

Table 6. Confusion matrix for the PAISITKRIANGKRAI’s algorithm.
% Centromere Homogeneous Nucleolar Speckled Nuclear membrane Golgi

Centromere 92.48 0.14 2.88 3.76 0.32 0.40
Homogeneous 0.72 70.21 7.87 11.11 9.67 0.42

Nucleolar 1.40 0.72 92.00 2.02 3.34 0.51
Speckled 13.01 8.92 3.54 70.84 3.36 0.33
NuMem 0.33 4.76 3.62 2.33 87.96 1.00

Golgi 1.38 2.73 13.71 3.22 12.79 66.16

Table 7. Confusion matrix for the POMPONIU’s algorithm.
% Centromere Homogeneous Nucleolar Speckled Nuclear membrane Golgi

Centromere 79.88 1.19 11.67 2.68 1.15 3.42
Homogeneous 0.10 61.95 8.88 9.84 19.04 0.20

Nucleolar 1.38 4.85 59.09 4.02 7.21 23.45
Speckled 13.00 22.15 8.26 51.96 4.38 0.24
NuMem 0.13 3.95 11.79 0.98 78.61 4.55

Golgi 0.26 6.35 23.38 0.23 27.23 42.55

Table 8. Confusion matrix for the SARRAFZADEH’s algorithm.
% Centromere Homogeneous Nucleolar Speckled Nuclear membrane Golgi

Centromere 92.60 1.13 2.17 1.49 1.52 1.10
Homogeneous 5.30 55.08 6.87 15.16 12.43 5.16

Nucleolar 19.17 6.01 58.80 7.28 3.98 4.76
Speckled 26.43 18.10 3.77 46.79 4.05 0.86
NuMem 0.62 5.77 1.07 0.98 82.99 8.58

Golgi 0.62 5.23 11.94 1.28 27.13 53.80
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Table 9. Confusion matrix for the SHEN’s algorithm.
% Centromere Homogeneous Nucleolar Speckled Nuclear membrane Golgi

Centromere 95.13 0.40 1.63 2.00 0.46 0.38
Homogeneous 0.39 78.15 4.92 9.14 6.64 0.76

Nucleolar 1.13 1.70 90.31 3.36 2.33 1.18
Speckled 10.39 13.40 3.24 69.68 2.47 0.82
NuMem 0.19 4.63 1.47 1.92 90.85 0.94

Golgi 0.89 9.67 14.76 2.40 12.23 60.05

Table 10. Confusion matrix for the STOKLASA’s algorithm.
% Centromere Homogeneous Nucleolar Speckled Nuclear membrane Golgi

Centromere 86.25 0.56 2.12 10.39 0.21 0.47
Homogeneous 0.38 67.08 5.69 12.82 13.32 0.72

Nucleolar 2.25 4.48 84.10 6.76 2.05 0.36
Speckled 14.76 13.53 3.67 64.84 2.98 0.22
NuMem 0.31 6.71 1.86 2.65 86.77 1.69

Golgi 0.66 13.78 13.55 2.17 34.63 35.22

Table 11. Confusion matrix for the THEODORAKOPOULOS’s algorithm.
% Centromere Homogeneous Nucleolar Speckled Nuclear membrane Golgi

Centromere 90.56 0.99 2.06 5.21 0.76 0.42
Homogeneous 0.40 64.51 1.82 10.62 21.99 0.67

Nucleolar 10.19 1.33 76.08 3.10 3.80 5.51
Speckled 20.62 13.24 4.77 55.94 4.86 0.57
NuMem 2.55 11.67 8.10 5.42 69.73 2.54

Golgi 8.71 1.61 19.96 1.15 25.09 43.47

Table 12. Confusion matrix for the THIBAULT’s algorithm.
% Centromere Homogeneous Nucleolar Speckled Nuclear membrane Golgi

Centromere 78,98 0,05 1,2 3,81 14,1 1,86
Homogeneous 0,12 55,56 1,59 11,83 29,55 1,34

Nucleolar 2,73 0,65 47,31 6,22 35,99 7,11
Speckled 13,65 14,13 2,73 39,32 29,54 0,64
NuMem 0,98 5,26 5,07 5,88 81,71 1,1

Golgi 1,09 10,52 29,46 2,73 41,76 14,44
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Table 13. Confusion matrix for the VESTERGAARD’s algorithm.

% Centromere Homogeneous Nucleolar Speckled Nuclear membrane Golgi

Centromere 96.21 0.25 1.34 1.44 0.46 0.30

Homogeneous 0.30 77.34 6.11 7.15 8.46 0.63

Nucleolar 1.17 1.68 92.76 2.31 1.09 1.00

Speckled 11.28 14.85 4.33 66.67 2.22 0.65

NuMem 0.22 2.96 1.93 2.01 92.10 0.78

Golgi 0.39 4.47 8.39 1.97 22.53 62.25

Table 14. Confusion matrix for the ZHANG’s algorithm.

% Centromere Homogeneous Nucleolar Speckled Nuclear membrane Golgi

Centromere 92.37 0.56 2.70 3.87 0.36 0.14

Homogeneous 0.53 70.26 4.93 11.70 11.70 0.89

Nucleolar 1.60 1.58 89.28 3.57 2.88 1.09

Speckled 14.11 11.28 3.41 65.63 4.81 0.76

NuMem 0.43 7.80 1.01 2.14 87.67 0.95

Golgi 0.92 4.93 10.10 2.24 19.04 62.78
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ABSTRACT 

A cell classification algorithm that uses first, second and 
third order statistics of pixel intensity distributions over pre-
defined regions is implemented and evaluated. A cell image 
is segmented into 6 regions extending from a boundary 
layer to an inner circle. First, second and third order 
statistical features are extracted from histograms of pixel 
intensities in these regions. Third order statistical features 
used are one-dimensional bispectral invariants [1]. 108 
features were considered as candidates for Adaboost [2] 
based fusion. The best 10 stage fused classifier was selected 
for each class and a decision tree constructed for the 6-class 
problem. The classifier is robust, accurate and fast by 
design. 
 

Index Terms— Cell, Classification, Histogram, 
Bispectrum, Higher order statistics, Adaboost 
 

1. RATIONALE OF THE METHOD 

An algorithm for automated cell classification is designed 
with the following considerations: (a) it must utilize texture 
information selectively from different parts, (b) it must be 
robust to rotation and noise, (c) it must capture third order 
statistical information from pixel intensity producing many 
features and (d) an optimal fused classifier should be 
generated for a given problem based on training data. The 
most original aspect of the methodology is the use of 
bispectral invariant features [1] from histograms to achieve 
the desired robustness and accuracy with support from 
region selection and feature selection using Adaboost [2].  

2. IMAGE PRE-PROCESSING 

It is assumed that individual cell images have been 
separated and a cell mask image is available. Based on the 
cell mask, each cell is divided into regions extending from a 
boundary layer to an inner circle. 6 regions are used in the 
system described here (listed in Table 1). They are not all 
disjoint. A histogram of pixel intensities is computed for 
each region.  

3. FEATURE EXTRACTION 

18 features are extracted from each region – brightness (first 
order), contrast (second order) and 16 one-dimensional 
bispectral invariants [1]. These features are designed to be 

robust to brightness and contrast changes. Histograms of the 
regions are invariant to rotation of the cell image by design 
and consequently, the features are as well.  Bispectral 
invariant [1] features are angles and lie in the range between 

),[  and the other features are normalized to this range. 
108 features were used to train classifiers for each of the 
HEp-2 cell classes using Adaboost [2]. The number of 
selected features by their order and the region of the cell 
they come from are given in table 1. 

Class Order Region 
1 2 3 Outer 

most 
Next 
outer 

Inner  
disc 

Inner 
ring 

Small 
disc 

Inner 
most 

HOM 4  6 4 3 1  1 1 
CEN 4  6 5  1 1 1 2 
NUC 4 1 5 3 3 2  2  
SPE 7 2 1 4 2 2 1 1  
NUM 5  5 4 4 1  1  
GOL 4  6 2 2 5  1  

Table 1 Number of selected features by order and region 

It can be observed that third order statistical features are 
important for all classes and that the outermost regions close 
to the cell boundary contain significant discriminative 
information. The best feature (first stage) was third order for 
3 of the classes and first order for the other three. 

4. CLASSIFICATION 

Adaboost [2] is used to generate 10 stage binary classifiers. 
They are combined in a decision tree. 60% of the ICIP HEp-
2 cell classification competition training data were used for 
training. The best binary classifier was 91% accurate and 
the overall accuracy for 6 classes was 49.1% on all data. 
The order of complexity of the algorithm is roughly 

)log()( 2
2 QRFQONO where 2N is the number of pixels 

in the cell, R is the number of regions, F is the number of 
bispectral features and Q is the number of intensity levels. 
For training 256,16,6 QFR and for testing 10RF . 

5. REFERENCES 

[1] V. Chandran and S. L. Elgar, “Pattern Recognition using 
Invariants Defined from Higher Order Spectra – One Dimensional 
Inputs,” IEEE Trans. Signal Processing, vol. 41, pp. 205-212, Jan 
1993. 

[2] Y. Freund and R. E. Schapire, “Experiments with a new 
boosting algorithm, in 13th Intl. Conf. Artificial Intelligence, 1996. 
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1. RSTIONAL OF THE METHOD 
 
We present a strategy for automatic classification of HEp-2 
cell patterns using texture features. As proved in the last 
year’s submissions in the contest of HEp-2 cell 
classification, the texture features such as local binary 
pattern (LBP) and its improved version can result in good 
classification performance. However, LBP only retains the 
sign (binary) information of the neighbor pixel compared to 
the focused pixel, and then lead to a lot of information loss, 
which would greatly reduce classification performance. 
Therefore, this study explores the distribution of local pixel 
neighborhoods (called as micro Texton) with a relaxed 
strategy of parameter Gaussian mixture model instead of a 
hard quantization, and then appends the gradient with 
respect to the model parameters for image representation, 
which also can be called as Fisher vector. The main 
advantages of the proposed feature representation include: 
(1) it can include much more information of the local pattern 
called as micro Texton than the LBP; (2) it represents the 
local Texton in a parameter Gaussian mixture model  
(GMM), which would be more accurate than the 
conventional hard-quantization such as in bag-of feature 
model; (3) It also appends the gradient of the parameters in 
(GMM) excluding the distribution of the micro Texton as 
features. However, we did not consider any spatial 
information in our proposed features for representing the 
cell image. In future works, we will combine some spatial 
information in our strategy.  For classifying the cell pattern, 
we apply random forest classifier which is proved to result 
in more promising performance than a linear SVM 
classifier. 
 

2. IMAGE PREPROCESSING 
 

 In the current version of our strategy, we did not consider 
noise in HEp-2 cell images, and the original intensity 
(0~255) is also directly used with any normalization. 
However,  we use the differential vector of a focused pixel 
to it neighborhoods as our basis pattern, which can partially 
remove the affect of the absolute intensity variation.  

 
3. FEATURE EXTRACTION 

 

This study starts with small pixel neighborhoods of 3 3 
local regions and model the statistics of the local differential 
vector with respect to the center pixel (called micro texton) 
instead of binary pattern in LBP. Given all possible 3 3 
neighborhoods in an image, i.e. 
xa = [xc, x1, x2,!, x8 ] where xc is the intensity of the 
center pixel and the rest are those of its 8-neighbors. We are 
intended to investigate the distribution p(xa / I ) of these 
vectors in a given image I. In order to remove the effect of 
the illumination variance, we subtract the intensity of the 
center pixel from the rest ones and use the difference vector 
as the micro texton. Then the distribution of the texton can 
be formulated as p(xa / I ) ! p(x / I ) , where x = [x1 ! xc,!, x8 ! xc ]  . 
Assuming the distribution abbeys multiple Gaussian models, 
we firstly learn the parameters of the multiple Gaussian in 
the texton space using some training images, and then form 
a fisher vector characterized by the gradient with respect to 
the parameters  of the model: 
f (!,x) =!! log p(x / !) . In our study, the parameters 

are the means and covariance matrix in the Gaussian 
mixture model. 
 

4. CLASSIFICATION 
 
In our experiments, we use 50 Gaussian models for 
representing the Texton space appending the gradients of 
mean and the diagonal elements of covariance matrix for 
each dimension of the Texton space, and the total feature 
dimension in the fisher vector is 850. We learn the 
classification model using random forest classifier with 
Positive and Intermediate modality. Given any cell and its 
mask image, the positive or intermediate modality, our 
system can automatically predict its pattern. With our 
system and the provided HEp-2 cell data, the evaluated 
classification rate is about 93% for positive cells, and about 
77% for intermediate cells. In addition, the complexity of 
the proposed system includes two parts: O(KMd) for feature 
extraction with Gaussian model number K, pixel number M 
and Texton dimension d, O(LD) with tree number L and 
feature vector dimension D. 
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CLASSIFICATION OF FLUORESCENT CELL IMAGES BASED ON MORPHOLOGICAL
PROPERTIES OF STAINED CELL REGIONS

Gennady V. Ponomarev1, Mikhail S. Gelfand1, Marat D. Kazanov1∗

1Research and Training Center on Bioinformatics, Institute for Information Transmission Problems, RAS, Russia.

1. RATIONALE OF THE METHOD

The main idea of our approach is exploiting for classification
the morphological properties of stained cell regions. More
specifically, we used for a recognition of the image class the
number, size, localization and shape of the stained cell re-
gions. The general scheme of the proposed method is as fol-
lows: i) image thresholding using Otsu binarization method
[1] along with the construction of normalized version of orig-
inal image; ii) extraction of image features; iii) image classi-
fication using SVM classifier [2].

2. IMAGE PREPROCESSING

Our method includes two separate steps of image preprocess-
ing in accordance with two logically distinct groups of ex-
tracted image features. The first group of image features were
extracted from the binary image obtained from the original
one. Thus, the first preprocessing step was the binarization
of the image using Otsu method [1]. On the second prepro-
cessing step the normalized image was derived from the orig-
inal one by a scaling of the image intensity into the interval
[0,255].

3. FEATURE EXTRACTION

All classes of fluorescent cell images differ by the cell regions
or domains that are stained in the image. These domains - nu-
cleoli, nucleus, chromosomes and other cell organells - differ
by size, shape, number and localization inside the cell. The
main idea of the proposed approach is to segment the stained
regions (further referred to as objects) in the image using bi-
narization technique and then to catch as extracted features
their morphological properties. Along with the extraction of
features from the binary version of image we also gathered
several image features using normalized version of the image.
Below is the list of extracted features divided into several log-
ical groups:

1) Object number.
2) Object size:
– mean object area;

∗Corresponding author: mkazanov@gmail.com

– maximum object area;
– object area variance.
3) Holes inside objects:
– holes number;
– mean hole area;
– maximum hole area;
– number of big holes.
4) Holes intensity depth:
– mean hole intensity depth;
– maximum hole intensity depth;
– hole intensity depth variance.
5) Foreground/background intensity properties:
– mean foreground intensity;
– foreground intensity variance;
– mean background intensity;
– background intensity variance.
6) Normalized image intensity properties:
– mean image intensity;
– image intensity variance.
7) Object localization:
– mean object-cell boundary distance;
– center-periphery intensity difference.
9) Object shape:
– length of the longest concave arc of object’s perimeter;
– convex hull area minus object area.

4. CLASSIFICATION

We used the Support Vector Machine (SVM) method [2] for
a classification of images using obtained set of image fea-
tures. The proposed classification method includes two in-
dependently trained classification models, which were con-
structed for positive and intermediate levels of cells image
intensity, respectively.

5. REFERENCES

[1] N. Otsu, “A threshold selection method from gray-level
histograms,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 9, no. 1, pp. 62–66, Jan. 1979.

[2] C. Cortes, V. Vapnik, “Support-vector networks,” Ma-
chine Learning, vol. 20, no. 3, pp. 273–297, 1995.
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CLASSIFICATION OF HEP-2 CELLS WITH RANDOMIZED FEATURES

Raphaël Marée
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1. METHOD

1.1. Overview

We use our generic approach [1] that implies the extraction
of random subwindows described by normalized pixel val-
ues, the use of extremely randomized trees to generate large
sets of visual features, and a final linear SVM classifier using
these image signatures. It does not rely on any specific image
processing step (denoising, . . . ). We used parameter values
guided by our previous studies and fine-tuned by internal val-
idation on the challenge training set.

1.2. Feature generation

Square subwindows are extracted at random positions, using
random sizes varying from 50% to 75% of original image
sizes as it yields better results on the training set compared to
unconstrained sizes used in [2]. Subwindows were then ran-
domly rotated (using right angles and mirroring) to enrich the
training set. We limited the total number of extracted subwin-
dows to 550 per image to meet our computational constraints.

Each subwindow was then resized using bilinear interpo-
lation to a fixed-size patch of 16x16 pixels, and encoded in
normalized RGB color space.

An ensemble of 50 trees was built using the Extra-Trees
algorithm [3]. Each tree was generated using a minimum
node sample size equals to 3750 and the default value for the
number of evaluated tests at each node. Each node of a tree
is a binary test that involves a thresholding on the difference
of a pixel and one of its eight direct neighbours. Pixels and
thresholds were drawn randomly and at each node the best
test among evaluated tests was choosen by the algorithm ac-
cording to a measure of impurity.

The ensemble of trees is then used to generate an image-
level signature inspired by bags of visual words or textons [4,
5]. Instead of using binary encoding as in [4] we considered
that each terminal node of a tree is a real-valued feature that
corresponds to the number of image subwindows that reach
the terminal node divided by the total number of subwindows
extracted in the image, similarly to [5].

RM is supported by the GIGA and by the CYTOMINE research project
(grant n◦ 1017072, http://www.cytomine.be), through funding of the Wallo-
nia and the European Regional Development Fund.

1.3. Classification

The number of automatically generated features was 243314.
A linear SVM was then trained using the training set of 13596
images described by these sparse, high-dimensional, signa-
tures as input of the LIBLINEAR tool [6] using default pa-
rameter values (L2-loss SVM (dual) solver, C = 1.0).

Predicting the class of a test image involves similar ex-
traction and description of subwindows, their propagation
through trees to generate its signature, and the final predic-
tion by the linear classifier.

1.4. Conclusions

On the training set, our approach yielded roughly 80% recog-
nition rate. Our submission should be viewed as a baseline as
no specific algorithm was developed and we believe extending
parameter ranges could further improve our performances.
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1. RATIONALE OF THE METHOD

Our system is based on the combination of 3 different
descriptors: the multiscale Pyramid Local Binary Pattern
(PLBP) [1], Strandmark morphological features (STR) [2]
and the canonical Haralick features (HAR) [3]. The 3
feature sets are classified using Support Vector Machines
(SVMs) and results are combined according to the sum
rule.

2. IMAGE PREPROCESSING

Before extracting the 3 feature sets, each image was
segmented by using the segmentation masks provided with
the HEp-2 training set. Specific preprocessing was
performed for the STR feature set and it is reported in the
next paragraph.

3. FEATURE EXTRACTION

3.1 Pyramid Local Binary Pattern

PLBP is based on the Local Binary Pattern (LBP) operator,
applied to each of the l=(0,…,L) levels of the gaussian
pyramid built from the original image by blurring and
downsampling it. We build the gaussian pyramid with a 5 x
5 lowpass kernel and a downsampling ratio Rx=Ry=2. The
used LBP operator is the uniform rotation invariant LBP
with the following neighborhoods: (radius = 1, pixels = 8)
and (radius = 2, pixels = 16). By considering levels 0
(original image), 1 and 2 we get 84 features.

3.2 Strandmark morphological features

STR is a reduced version of the Strandmark features.  First
the background is removed from the image and the image
bins containing less than 0.5% pixels are deleted from the
10 binned image histogram.
The image is then thresholded using 20 equally spaced
thresholds from the minimum to the maximum image
intensity value. From each of the 20 binary images the
following features are computed: (1) number of objects, (2)
area, (3) area of the convex Hull, (4) eccentricity, (5) Euler
number and (6) perimeter. Then each binary image is used

to produce a cut out of the original image. From the 20 cut
outs (1) mean intensity and (2) mean entropy are computed.
Then (1) mean local standard deviation, (2) mean local
entropy and (3) mean local range are computed on the
previous cut outs and on new cut outs obtained by replacing
the original binary image with an eroded version (erosion
kernel 5 x 5 pixels). One more feature set made of (1)
mean, (2) median and (3) standard deviation is computed
on the magnitude of the gradient of the original image
smoothed with 10 diverse s equally spaced in the interval
[0.6, 10.5].
Finally the image aspect ratio is included as the last feature.
This feature set is made of 311 features and it is extracted
first from the original image thus getting the feature vector
F1. The same features are extracted by smoothing the
original image by a Gaussian kernel ( =1 and =2.5), thus
getting feature vectors F2 and F3. The final feature vector
is the concatenation of F1, F2-F1 and F3-F2 (933
features).

3.3 Harlick features

HAR is used as the third feature set. It is extracted from the
grey level occurrence matrices computed with distances 1
and 3 pixels. The used adjacency angles are 0°, 45°, 90°
and 135°. This feature set is made of 104 features.

4. CLASSIFICATION

Classification is performed with radial basis function
SVMs, according to the “one versus all” approach. 6 SVMs
(one for each class) are trained for each of the 3 feature sets
considering the specific class as the positive case (+1) and
all the others as negative cases (-1). While testing the
system on a test image, each of the 3 feature sets is
classified by its corresponding 6 SVMs, the 3 partial score
corresponding to the same class are combined by the sum
rule in one global score and the greatest among the 6 global
scores is considered for assigning the test image to its class.

[1] Qian X et al., “PLBP: An effective local binary patterns
texture descriptor with pyramid representation”, Pattern
Recognition, 44(10–11):2502–15, 2011.
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1. METHOD DESCRIPTION

1.1. Raionale of the method

In this paper, we describe an effective and efficient classi-
fication framework to automatically recognize different pat-
terns of HEp-2 cells. The basic intuition behind our approach
is that, instead of using a single feature to discriminate each
class from all other classes, it is better to combine a set of di-
verse and complementary features. To achieve this objective,
we combine several discriminative visual features known to
be effective for cell classifications with a robust and scalable
multi-class boosting. The advantage of our approach is that it
is fast to train, less sensitive to the coice of parameters cho-
sen and has a faster convergence rate than existing multi-class
boosting algorithm. We discuss details of our approach in the
following sections.

1.2. Image preprocessing

Denoising and normalization We first apply an image con-
trast enhancement technique known as histogram equaliza-
tion. The salt and pepper noise is removed using median fil-
tering in the 3×3 neighbourhood. For LBP and region covari-
ance, we resize the original image and the mask to the size of
64× 64 pixels.
Image rotation To increase the number of training samples
and Improve the robustness of the classifier, each cell image
is rotated at every π/4 degrees angle. For each training image,
there will be 7 additional images corresponding to {π/4, π/2,
· · · , 7π/4} orientations. During testing, a voting scheme is
applied as a post-processing step to increase the robustness of
decision making. We observe that this simple strategy slightly
improves the final classification accuracy.

1.3. Feature extraction

Region covariance We propose to use the covariance of sev-
eral image statistics as the visual descriptor [1]. In this paper,
we use the following image statistics: the intensity value; the
first and second order derivative in the vertical and horizontal
directions; and the magnitude of the gradients.

Local Binary Pattern Due to the large variation in illumina-
tion and shape of cells, we use LBP features to capture the
characteristics of cells. LBP describes a local region with
the magnitude relations between the centre and neighbouring
pixel intensities in the local region. In this paper, we use the
extension of LBP, known as CoALBP [2], which can describe
complex textures by observing not only each local LBP but
also the spatial relations among adjacent LBP.
Statistical features We use the statistical data as described
in [3]. The features consist of number of objects in the thresh-
olded image; area; area of convex hull; eccentricity; Euler
number and perimeter; mean; standard deviation; entropy;
range value; constrast; correlation energy; and homogeneity.
Interested readers should see [3] for more details.
Type of Intensities The type of intensities can be one of the
following: positive, negative or intermediate.

1.4. Classification

To achieve a high classification accuracy and real-time perfor-
mance, we employ the multi-class boosting algorithm of [4]
that can adaptively select the most discriminative feature in
each boosting iteration and combine them into an effective
strong classifier. The approach is not only efficient but also
effective since it directly maximizes the multi-class margin.

2. REFERENCES
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direct formulation for multi-class boosting,” Submitted.

17



HEP-2 CELLS CLASSIFICATION USING COMPLETE LOCAL BINARY 
PATTERNS  

 
Victor Pomponiu1 and Harishwaran Hariharan1 

 
Department of Radiology1, University of Pittsburgh, 15213, PA, USA 

{pomponiuv, hariharanh@upmc.edu} 
 

ABSTRACT 
 

The classification of the human epithelial cell line (HEp-
2) cell images is a clinical important and relatively 
unexplored area of research. In this paper we present a novel 
scheme for automatic classification of the staining patterns 
on single-cell fluorescent images.  The approach is based on 
the Local Binary Patterns (LBP) in order to characterize the 
textural features of the HEp-2 cell images. After the 
descriptors are computed, a Nearest Neighbored (NN) is 
used to perform the classification. The capability of the 
method is assessed on the ICIP 2013 Cell Classification 
Contest Training dataset comprising over 13000 cell images 
pertaining to six cell classes, i.e., Centromere, Golgi, 
Homogeneous, Nucleolar, NuMem, and Speckled. The 
result computed with 5 fold cross validation shows 92.2% 
classification accuracy. 
 

Index Terms— HEp-2 cells, complete local binary 
patterns (CLBP), bilateral filtering, k-NN classification. 
 

1. INTRODUCTION 
 
Indirect immunofluorescence imaging is the technique 
employed to detect autoantibodies in patient serum, which 
have been confirmed to be in connection with the 
occurrence of autoimmune diseases such as systemic 
autoimmune rheumatic diseases, primary biliary cirrhosis 
and dermatomyositis. These diseases are detected by a 
specific fluorescence pattern on a humane epithelial cell line 
(HEp-2). The fluorescence patterns are in general observed 
by physicians visually inspecting each slide using a 
fluorescence microscope. Computer-aided detection (CAD) 
is used in cell screening as an adjunct procedure to reduce 
false positives and its efficacy has been observed in many 
studies.  

Finding a good set of features (descriptors) for devising 
a automatic classification scheme is essential for its success. 
Several descriptors have been proposed recently in 
literature: LBP [1] and its variants [2-4], BRIEF [5], BRISK 
[6], ORB [7] and HOG [8-12].  

In this study, we present a technique based on complete 
LBP (CLPB) that can be used to improve the performance 
and robustness of CAD schemes. Here, we use the CLBP 

features to describe the microstructures and textural 
properties of the following cell patterns: 1) homogeneous, 
with diffuse staining of the interphase nuclei and staining of 
the chromatin of mitotic cells; 2) speckled, characterized by 
a fine granular nuclear staining of the interphase cell nuclei; 
3) nucleolar given by the large coarse speckled staining 
within the nucleus; 4) centromere, with discrete speckles 
distributed throughout the interphase nuclei; 5) golgi, is a 
type of silver staining, that reveals the morphological traits 
of the cells, and 6) numem. 

  Once the CLPB features are generated for each cell 
image, we use Nearest Neighbor (NN) method to classify 
the image cells, obtained from the ICIP 2013 Cell 
Classification Contest Training dataset [13], into the six 
patterns.  
 

2. PRE-PORCESSING 
 
Firstly, each cell image is binarized and then several 
properties are extracted, in particular it’s bounding box 
(BB). Further, in order to reduce the size of the feature 
vector we resized the BB image to a size of w×w pixels by 
interpolating the image with interpolation with a Lanczos-2 
kernel filter (see Fig. 1). 
 

        
a)                            b) 

Fig. 1. a) Illustration of a homogenous cell image; b) its 
bounding box resized to 40×40 pixels.  
 

Note that, we avoid to apply any filtering, such as 
median or bilateral filtering since will this operation could 
eliminate important textural and structural details of the cell 
image patterns. 

 
3. FEATURE EXTRACTION 

 
The features that we employ to classify the image cells is 
based on CLPB which was proposed by Guo et al. [3] to 
characterize the local structure in a 3×3 neighborhood. 
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These features have been successfully applied by the 
computer vision community for texture classification. 
Essentially, the CLBP approach is based on the assumption 
that the local appearance and textural structure can be 
defined by the histogram of the local sign, magnitude and 
central pixel defined on a dense grid. The CLBP histograms, 
of the sign magnitude and central pixel, combine structural 
and statistical information, and capture the distribution of 
the classified structures.  

The sign LBP feature is obtained as follow: e center 
pixel is used as a threshold and intensity comparison with 
the 8 neighboring pixels is performed. Each pixel having 
intensity value greater than threshold is assigned the binary 
value 1, otherwise the binary value zero. Afterwards, the 8 
binary values are considered as a binary representation of a 
decimal number, and a histogram of all the corresponding 
values computed across the image is calculated. In the same 
manner, are computed the magnitude and the central LBP 
histograms. 
 

4. CLASSIFICATION 
 
The HOG feature extraction algorithm is characterized by 
the following parameters: the BB image size, the number of 
samples and the radius size around the central pixel of a 
neighborhood. Additionally, there are several other 
parameters related to NN classifier used (i.e., the number of 
neighbors, the search method and the distance metric). 
During the training, we optimize these parameters by 
interactive experimentation: we set all the parameters to 
their standard values and gradually perturb one parameter at 

a time, maintaining the result obtained if it improved the 
average classification accuracy of the algorithm.  

The result of this optimization procedure for the entire 
parameter set was: 
 

• 40×40 pixels for the BB size, 

• {1, 2, 3} radii and {8, 16, 24} corresponding 
samples,  

• NN with 7  neighborhoods,  

• Exhaustive search, 

• Euclidian distance metric. 
 
The feature histograms are used to classify the cells 

images. To achieve the best classification we used kNN 
classifier with the distance between two cell images a 
combined histogram dissimilarity between the feature 
histograms. 
 

5. EXPERIMETNAL RESULTS 
 
Classification performance is evaluated by 5 fold cross 
validation error estimation on the set of 13596 cell images 
separated into six classes: 2494 homogeneous, speckled 
2831, 2598 nucleolar, Centromere 2741, 2208 NuMem and 
724 Golgi. 

The estimated classification accuracy for the proposed 
method is 92.2%. The confusion matrix of the CLBP 
approach method is summarized in Table 1. From the 
confusion matrix we can notice that the poorest 
classification accuracy is achieved by Golgi pattern class.   
 

 

Table 1. Confusion matrix of the proposed method for classification of the cell images. True label is illustrated on the rows 
while assigned label by the kNN classifier is on the columns. 

 Homogeneous  Speckled  Nucleolar Centromere NuMem Golgi 

Homogeneous  2362 96 12 4 11 9 

Speckled 109 2601 57 36 25 3 

Nucleolar 30 57 2438 13 31 29 

Centromere 9 64 41 2626 1 0 

NuMem 116 33 33 1 2010 15 

Golgi 34 16 112 15 43 504 
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1. RATIONALE OF THE METHOD 
 

The competition is about the recognition of the staining 
pattern of the cells obtained by IIF images according to 
the following classes: Homogeneous, Speckled, 
Nucleolar, Centromere, Golgi and Nuclear Membrane. 
The system architecture is as follow: two images are 
considered as input, original image and related mask 
image; some preprocessing algorithms are applied on the 
input image to prepare it for feature extraction step; some 
texture features are extracted from the prepared image; 
and finally a model is designed for classification based on 
mixture models. The proposed system is easy to 
implement and it takes too little time to run.  
 

2. IMAGE PROCESSING 
 

First, the associated input mask is applied to each image 
to consider information within the mask which is named 
MaskImage. Then, the contrast of MaskImage is enhanced 
using histogram equalization. Next, each MaskImage is 
resized to a 100!100 pixel image using bicubic 
interpolation method which is named ProImage. This 
image (ProImage) is ready for feature extraction. 
 

3. FEATURE EXTRACTION 
 

Thirty six features are extracted from ProImage as follow: 
Six statistical features to compute texture measures such 
as average intensity, average contrast, smoothness, 
skewness, uniformity and enthropy [1]; seven invariant 
moments described in [1] which are invariant to 
translation, scale change, mirroring and rotation; thirteen 
Haralick features described in [2] and ten discrete wavelet 
frame texture descriptors described in [3] with three 
multiresolution levels. So the features matrix is a 36!n 
matrix in which n denotes the number of samples. The 
features matrix is then processed by mapping each row's 

means to 0 and deviations to 1. Then the new features 
matrix is processed using principal component analysis so 
that each row is uncorrelated. This uncorrelated features 
matrix is used for classification. 
 

4. CLASSIFICATION 
 

In this stage we have an uncorrelated features matrix with 
36!13596 dimensions in which 36 is the number of 
features for each image and 13596 is the number of 
samples (images). These samples should be classified into 
six groups, so there are 6 classes for classification. The 
number of training sets is 13596. The maximum 
probability normal classifier is used and the parameters of 
Gaussian distributions for each class is determined using 
STPRtool function mlcgmm described by Franc and 
Hlavac [4]. We made the additional assumption of 
diagonality of the class covariance matrices to achieve 
better results. For testing sets the procedure expressed for 
training sets is repeated and the classification itself is 
performed by function maxnormalclass described in [5]. 
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ABSTRACT 
 
Human Epithelial type 2 (HEp-2) cells play an important 
role in the diagnosis of autoimmune disorder. Traditional 
approach relies on specialists to observe HEp-2 slides via 
the fluorescence microscope, which suffers from a number 
of shortcomings like being subjective and labor intensive. 
Pattern recognition techniques have been recently 
introduced to this research issue to make the process 
automatic.  

We propose in this paper a framework using rotationally 
invariant features, dense SIFT features + bag of words and 
pairwise Co-occurrence local binary pattern for HEp-2 
classification. For SIFT approach, a large number of SIFT 
features were clustered to form a dictionary, which was then 
used for cell representation. For pairwise LBP, the uniform 
pattern LBP operator was applied to two neighboring points 
for feature extraction. Finally, the two features were fused 
and input to a SVM (Support Vector Machine) for 
classification.  
 

Index Terms— SIFT, Local Binary Pattern, Support 
Vector Machine 
 

1. Rationale of the method 
 
We developed three systems, namely SIFT, CoLBP and 
Fusion for the ICIP 2013 contest. For SIFT approach, dense 
sampling was used to extract a large number of SIFT 
features, which were then used to learn a dictionary with 
1024 words for cell representation. CoLBP use a pair of Co-
occurrence LBP operators for feature extraction. Compared 
to classical LBP, the approach extracts LBP features from 
two neighborhood points. Fusion approach fuses both SIFT 
and CoLBP features for cell representation. For all of the 
three systems, SVM classifier was finally used for 
classification.  

2. IMAGE PREPROCESSING 
 
No special image processing method was adopted here, the 
cell images were directly used for feature extraction and 
classification. 

 
3. FEATURE EXTRACTION 

 
3.1. SIFT 

Multi-scale, i.e. 20× 20, 36× 36, 40× 40 etc. dense 
sampling was used for interesting point location. Classical 
SIFT descriptor was then adopted to extract SIFT 
histograms at theses interesting points. The extracted SIFT 
features were then used to learn a dictionary with 1024 
words. The dimension of feature for this approach is thus 
1024 [1]. 
 
3.2. CoLBP 

 
As shown in the figure, the uniform pattern LBP operator 
was applied to two neighboring points for feature extraction. 
To make such feature rotationally invariant, the neighboring 
point B was located at certain distance along the gradient 
direction of A [2].  
 
3.3. Fusion 
The two features were finally fused at feature level after 
normalization.  
 

4. CLASSIFICATION 
 
Given the three features, a SVM with linear kernel was 
finally used to classify the cell image into one of the six 
classes. Two-fold cross validation was used to tune the 
parameters. 
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1. Overview

Our submitted program is an implementation of a k-
nearest neighbor classifier build using Metric Similarity
Search Implementation Framework (MESSIF). We use
global image descriptors such as Local Binary Patterns
(LBP), Haralick Features, Color Structure (from the
MPEG-7 multimedia descriptors), Granulometry-based
descriptor, and statistical texture descriptors. Almost all
of them (except for Color Structure) were implemented
with help of i3d image processing library developed in
our group.

The classification process of each image can be di-
vided into 4 stages: (i) preprocessing, (ii) k-NN search,
(iii) joining information from all nearest neighbors and
inferring of classification estimate and (iv) combination
of partial classification estimates and computing final
classification.

2. Classification process

i. Preprocessing The aim of the preprocessing stage
is to denoise, normalize and enhance images before im-
age descriptors are used. Denoising is done using the
paralel combination of morphological filters. The so-
called impulse noise (a small group of pixels with re-
markably high intensity) is also removed.

Last step of image preprocessing is contrast en-
hancement. We estimate the value of ambient illumi-
nation by analyzing the background outside the cell, re-
move this illumination and then apply linear stretch to
all intensity values.

ii. k-NN search Because we use several different im-
age descriptors, we create separate feature space with
proper metric for each of them. We use the following
descriptors and feature spaces:
• LBP descriptor with the L1 metric
• Haralick Features with the L1 metric
• Color Structure with the L1 metric. This descriptor

is computed from a pseudo-color version of gray-
scale image, where the standard JET color scheme
is used.

• Granulometry descriptor, for which we use our
own definition of distance function.

• Surface descriptor, which is based on computing
cumulative derivative of neighboring pixels. L1
metric is used also in this feature space.

• radial cell structure descriptor with L1 metric

During the k-NN search we use custom aggregated
distance function which combines different descriptors
with different weights. Because we are using k = 9, the
result of this stage is a list of 9 most similar neighbors
to the query image found in the knowledge-base.

iii. Joining information from neighbors and classi-
fication estimate The input for this stage is a list of
k neighboring images obtained in the previous stage.
Each image j is associated with the class label cj .

For global descriptors we combine the results of k-
NN search together with so-called weighted voting —
the weight wj of each found image from the database
linearly decays with the distance from the query object.
So we compute voting results p1, . . . , p6 for each of the
6 classes. These 6 numbers form so-called classifica-
tion estimate E = (p1, . . . , p6), where i-th number pi
expresses the preference, that the query image belongs
to the i-th class.

iv. Combination of classifications For each
query image we evaluate 3 different k-NN searches,
so we obtain 3 different classification estimates�
E

(1)
, E

(2)
, E

(3)
�

and we need to combine them to-
gether. The final preference number Pi for i-th class
is the sum of Hi + Mi, where Hi is a harmonic mean
and Mi is a multiplication of the preference numbers
p
(1)
i , p

(2)
i and p

(3)
i belonging to the i-th class. The clas-

sification result is the category ci with the highest pref-
erence number Pi.
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1. RATIONALE OF THE METHOD 

 
Staining patterns presented on IIF slides are characterized 
by great variability.  Fluorescence intensity is distributed 
either in structured, stochastic or intermediate manner. 
Every fluorescence pattern group is characterized by unique 
optical properties originating from the nature of the depicted 
cells.  
In order to express appropriately these characteristics as 
numerical values forming a representative vector, a novel 
set of morphological features which is a variant of the two 
dimensional Boolean texture models is incorporated. 
 

2. IMAGE PREPROCESSING 
 

On each cell image a median filter is applied in order to 
eliminate isolated intensity extremities. The original image 
is then normalized by subtracting the minimum value of the 
filtered image, and then dividing each pixel’s value by the 
difference between maximum and minimum intensity of the 
filtered image. The pixel values are then clipped in order to 
fit in the range between 0 and 1. 

 
3. FEATURE EXTRACTION 

 
Subsequently, a set of binary images are constructed via 
application of thresholding operation to the image, utilizing 
a set of 14 equally spaced values in the range of [0,1] as 
threshold values. Significant amount of information is 
carried by the resulting sequence of binary images regarding 
the spatial distribution of intensities on the depicted staining 
pattern, expressed in the form of patterns of homogenous 
regions of Boolean “True” value, namely objects, with 
differentiating properties along the various threshold levels. 
In order to quantify this information, Connected Component 
Analysis is performed in each binary image, and the 
following set of morphological features is computed for 
each of them: Number of detected objects, density in binary 
image and mean objects’ solidity, where objects of size less 
than 1% of the mean objects’ size of each binary image, are 
considered as noise and ignored during the calculation of the 
above features. Finally, the complexity of the cell’s contour 
is considered as an additional feature. We chose to quantify 
the complexity as the difference between the cell’s contour 

and the perimeter of the equivalent circle. Further details on 
the incorporated features can be found on [1]. 
 

 
 
 
4.CLASSIFICATION 
 
The resulting feature vector is normalized by subtracting the 
mean vector and dividing each feature by the standard 
deviation of the corresponding values of the training set. 
Cell images of positive and intermediate intensities are 
normalized separately, using the corresponding statistics 
from the training set. 

The final classification is performed using the standard 
k-NN classification rule. Cell images of positive and 
intermediate intensity are classified separately, using the 
feature vectors corresponding to training images of the same 
intensity. 
 

11. REFERENCES 
 
[1] Theodorakopoulos, I., Kastaniotis, D., Economou, G., 
Fotopoulos, S., HEp-2 Cells classification via fusion of 
morphological and textural features, Bioinformatics & 
Bioengineering (BIBE), 2012 IEEE 12th International Conference 
on , vol., no., pp.689,694, 11-13 Nov. 2012. 

24



AUTOMATIC CELL CLASSIFICATION USING STATISTICAL FEATURES

Guillaume THIBAULT and Izhak SHAFRAN

Center for Spoken Language Understanding, Oregon Health & Science University, Portland Or, USA

ABSTRACT

This abstract presents an automatic and efficient cell classifi-
cation by fluorescent image analysis method, based on using
two different families of statistical texture descriptors and a
classifier. The method provides a high classification rate for
the dataset under study.

Centromeres (2741) Golgi (724) Homogeneous (2494)

Nucleolar (2598) NuMem (2208) Speckled (2831)

Fig. 1. Examples of typical cells for each category (and the number
of individual), provided by the ICIP 2013 ”Competition on Cells
Classification by Fluorescent Image Analysis“.

Index Terms— Cell classification, Fuzzy Size Zone Ma-
trix (FSZM), Multiple Local Binary Pattern (MLBP).

1. METHOD DESCRIPTION

The image to process are under exposed (histogram on the
left), fuzzy and highly noisy (see figure 1). But commons il-
lumination and contrast correction algorithms are particularly
sensitive to noise. In order to avoid such tricky and hazardous
pre-processing, we use two different statistical descriptors
which are not or slightly sensitive to such issues.
First, the Fuzzy Size Zone Matrix (FSZM, not published yet)
is a fuzzy version of GLSZM [1], which provides a statistical
representation by the estimation of a bivariate conditional
probability density function of the image distribution values.
Then features are moments of order −2 to 2 computed on
such a matrix.
Second, the Multi-resolution Local Binary Patterns (MLBP)

[2], is a rotation and gray level invariant technique which
attributes to each pixel a unique code according to its neigh-
borhood. Then the histogram of codes (from 0 to 35, because
of the rotation invariance) characterizes the texture.

This multi-classes problem is decomposed into 6 binary
sub-problems of classification (one per class, in order to sim-
plify the global problem and then improve the results), for
each class two classifiers (on per descriptor) are built with
Random Forest [3]1 and the probabilities provided by models
are averaged in order to provide a final probability for the cell
under study to belong to the class. The cell under study is then
labelled with the class corresponding to the highest probabil-
ity. The table 1 shows the results for each sub-problem, which
are particularly efficient according to the image to classify.

FSZM MLBP
Centromeres 89.32 93.15
Golgi 86.8 77.86
Homogeneous 88.19 79.31
Nucleolar 83.41 87.95
NuMem 88.68 91.99
Speckled 79.84 76.77

Table 1. Predictions (in %) obtained for each sub-problem
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1. RATIONALE OF THE METHOD

We adopt a standard pipeline for supervised image classifica-
tion: Preprocessing of images, extraction of meaningful fea-
tures and finally classification. The parameters involved are
tuned using a cross validation scheme. The originality of the
method consists primarily of the choice of features, namely
a histogram based second order image descriptor encompass-
ing the circular nature of the cells. The main benefit of this
pipeline is that it is rich in the explanatory power, while its
principle is simple to explain. However, the richness of the
extracted features can result in reduced interpretability and in-
creased dimensionality. Thus, a relatively sophisticated – and
time consuming – classification algorithm is needed; here we
use kernel support vector machines (k-SVMs).

2. IMAGE PREPROCESSING

The image preprocessing is very limited. We do two things
for preparing each image for feature extraction: First, each
image I is augmented with its logarithmic representation
loge I. Second, each representation is mapped linearly to
[0, 1] such that their minimum attain a value of zero and their
maximum a value of one. Thus, the features described below
are extracted from both representations of each image.

3. FEATURE EXTRACTION

For each image, a feature vector is built consisting of: 1) The
’intensity’ of each image (NEGATIVE/INTERMEDIATE/
POSITIVE) as an integer flag, 2) morphological features
extracted from the provided mask (including area, eccen-
tricity, major and minor axis length, perimeter), and 3) the
donut-like shape index histogram feature (for both image
representations).

The most significant feature descriptor consists of weighted
histograms, of second-order image features, over a number K
of band-shaped regions (donuts). Each region is defined by its
distance to the center pixel of the image, i.e., its radius ri. The
weight for each pixel is assigned based on a Gaussian distri-

bution centered on the radial band. The weight wj for the j’th
pixel with image coordinates (xj , yj) to the histogram for the

i’th donut region is found as wj = exp{− (
√

x2
j+y2

j−ri)
2

2σ2 }

where the origin (0, 0) is defined as the center of the im-
age and σ is the standard deviation of the Gaussian. Thus,
features collected in each donut region Ri, i = 1, . . . ,K
describes image characteristics approximately at a distance ri
from the image center.

We use this ring-like spatial pooling to collect shape index
features in five distances from the image center. In brief, the
shape index quantifies second order information in the image
from the local Hessian eigenvalues [1]. We collect these fea-
tures at six different scales, for each of the five donut regions,
each binned in sixteen bins. This adds 5 · 6 · 16 = 480 ele-
ments for each image representation to the feature vector, to
a total of p = 977 per image.

4. CLASSIFICATION

For classification we have trained kernel SVMs on the sup-
plied training set. We have chosen, by use of cross validation,
to use an RBF kernel with γ = 1

p , penalty parameter C = 15
and a one-vs-one scheme for multi-class support. In the ten
fold cross validation study, we achieve a misclassification rate
of approximately three percent.

The computational complexity of the system during test-
ing is combined from two elements, namely feature extrac-
tion and classification. The most expensive operation dur-
ing feature extraction is a 2D FFT, which is in the order of
O(N logN), where N is the width of a square image. For
classification, the k-SVM is linear in the number of support
vectors m and the feature dimensionality p, thus in the order
of O(pm).
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1. Introduction

Our proposed solution for the HEp-2 cell image classi-
fication is based a improvement of standard Bag-of-Words
(BoW) system. Unlike traditional BoW system in which
the descriptor for local patches is empirically selected, our
algorithm adopts a deep learning scheme to automatically
learn the discriminative descriptors from the raw image pix-
els. The motivation is that different cells can be distin-
guished by their unique textures but we dont know what
descriptor is most suitable for describing such visual pat-
tern. Hence, we decided to utilize the supervised informa-
tion provided from the class label to guide the design of
patch descriptor. More specifically, we employ partial least
square analysis to automatically learn a set of discrimina-
tive directions to project the local patches into smaller di-
mension vectors and utilize these vectors as the discrimina-
tive descriptor. One issue of this initial idea is that we only
have the class label for each image and patches extracted
from one image do not necessarily share the same class la-
bel with the image. Actually, the difference between cell
categories is only reflected on a small number of patches,
many patches are common patches shared by many cell cat-
egories. To address this issue, we propose to firstly cluster
the image patches into few groups and learn the discrim-
inative descriptor from the patches in each group individ-
ually. Then for each group, we follow the standard BoW
pipeline to build codebook and create histogram represen-
tation based on the learned discriminative descriptor. Hence
for each image we will have N (the number of groups) his-
tograms representation. We concatenate them to form the
final image representation. In the discriminative descriptor
learning step, we still assume the patches from one image
sharing the same class label of that image. This assump-
tion, as discussed above, is clearly not appropriate. How-
ever, because we pre-cluster the patches into groups, we
may hope that common patches and discriminative patches
will be separated into different groups. This is based on
the assumption that common patches and discriminative
patches have different appearance. So for the group with
more discriminative patches the generated descriptor, code-
book and histogram will be more discriminative because the

estimated projection will be less affected by the common
patches. Of course, for the group with less discriminative
patches, the resulted image representation will be less dis-
criminative. But because we build a histogram separately
for each group, we can let the classifier, SVM in our case, to
assign different weight for different groups and thus avoid
the confusion caused by the inappropriate class label assign-
ment.

1.1. System Structure

First, the brightness normalization is performed for the
input image and the local patches are extracted from each
image on a dense sampling grid. In the training stage, these
patches are projected by using PCA and a codebook with N
codewords are created from the sampled projection coeffi-
cients. This codebook will be used to partition all the local
patches into N groups. Then a partial least square analysis
is performed in each group to obtain d discriminative pro-
jections. The discriminative projections from each group
will be used to re-project the image patches to low dimen-
sional vectors in each group. Following the BoW pipeline, a
codebook will be built for each group and will be employed
to obtain the histogram for each image. Histograms from
different groups will then be concatenated together to form
the final image representation. A SVM will then be learned
as the classifier. In the test stage, the image representation
generation process will be repeated but we do not need to
partition local patches into N groups. We will simply use
the stored N group of projections and codebooks to calcu-
late the histogram representation.

1.2. Implementation Details

In our implementation, we densely extract image patches
with step size 2 pixels. The patch size is 9x9 pixels. we
clustered local patches into 5 groups. More groups were
tried but no significant improvement was observed. We use
NIPALS algorithm to calculate the partial least square pro-
jections and fix the projection dimension to 80. We employ
linear SVM with square root preprocessing step applying to
histogram count.
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