
Contest on Graph Embedding

for Pattern Recognition

M. Vento
mvento@unisa.it

P. Foggia
pfoggia@unisa.it

November 30, 2009

Abstract

This document describes the data files and application requirements
for the participants to the contest on Graph Embedding on Pattern Recog-
nition, hosted by the 20th International Conference on Pattern Recogni-
tion (ICPR2010).

1 Introduction

This document is aimed at providing the researchers willing to participate to
the Contest on Graph Embedding for Pattern Recognition with all the technical
information needed to use the datasets distributed for the contest and to produce
the application output in the right format for performance evaluation. For more
information about the contest motivations, please refer to the web site of the
contest [1].

The rest of this document is organized as follows: in section 2 there is a short
description of all the files in the archive given to the contestants. In section 3 are
detailed the requirements the software must satisfy to be compatible with the
evaluation procedure. Section 4 describes the format of the input files, while
section 5 describes the format of the output file the software must produce.
The performance index is presented in section 6. Finally, section 7 describes the
scripts provided in the archive to allow the contestants to tune their algorithms.

2 Provided files

The archive you have already unpacked (in order to read the present document)
contains the following files:

• readme.pdf: the document you are reading.

• aloi-1.grf, coil-1.grf, odbk-1.grf: the files containing the graphs
extracted from three image databases: the Amsterdam Library of Object
Images (ALOI) [2], the Columbia Object Image Library (COIL) [3] and
the Object Databank (ODBK) [4]. The format of these files is described
in section 4.

1



• aloi-1.gtr, coil-1.gtr, odbk-1.gtr: the ground truth files, used by
the script that computes the performance index.

• perfomance_index.py: the script that computes the performance index,
documented in section 7.

• simple_explicit.py and simple_implicit.py: two scripts that com-
pute a very simple graph embedding, provided as a reference for the output
file format; the scripts are documented in section 7.

3 Application requirements

Contest participants must submit a console application, that receives on the
command line the name of its input file and of its output file (the file formats
are detailed in sections 4 and 5). For instance, supposing the name of the
application is grfembed, it will be invoked using the operating system shell as
follows:

grfembed aloi-1.grf aloi-1.out

In this example, the application is expected to take its input graphs from the
file aloi-1.grf and to store the computed embeddings in the file aloi-1.out .

It is possible, if the authors desire so, to add some other command line
arguments before the name of the input and output files, e.g. for specifying
some parameter setting. It is also possible to require different parameters to
be provided for each of the three databases. The authors should clearly state if
this is the case, and the exact value of the arguments (no tuning or adjustment
will be performed by the contest organization).

Please remember that for the contest evaluation, three different sets of graphs
will be used from the ones provided in this archive, although they will be ex-
tracted from the same databases.

The application should be submitted in binary form for one of the following
operating systems:

• Windows XP, on a 32 bit X86 processor;

• Linux 2.6.x, on a 32 bit X86 processor; the tests will be performed using
the Ubuntu Linux distribution;

• Mac OS X 10.5, on a 32 bit X86 processor.

If you cannot provide a program executable on any of these platforms, please
contact us to find an arrangement (if possible) for a different experimental setup.

Please take note that, since the program can either perform an explicit
embedding or an implicit one, and the output format is different for the two
cases, you should clearly state which kind of embedding is performed by your
application.

4 The input file format

The input file contains a set of graphs from a single image database. The file
is in text format, using the ASCII character encoding. The line termination

2



follows the Unix convention (a single Line-Feed, code 10, marks the end of the
line). Within each line of the file, the different fields are separated by ASCII
spaces (code 32).

Within the file, the data for the graphs in the set are written sequentially.
Each graph has the following format:

<header line>
<number of nodes n>
<attributes of node 0>
. . .
<attributes of node n− 1>
<number of edges of node 0>
<first edge of node 0>
. . .
<last edge of node 0>
<number of edges of node 1>
<first edge of node 1>
. . .
<last edge of node 1>
. . .
<number of edges of node n− 1>
<first edge of node n− 1>
. . .
<last edge of node n− 1>

where <header line> is a line of the form:
G id

with id equal to an integer uniquely identifying the graph within the dataset.
<attributes of node i> are lines of the form:

i si ri gi bi

with i a progressive number identifying the node (starting from 0), and si, ri,
gi, bi are node attributes encoding the size and the average color of the image
area represented by this node.
<number of edges of node i> is the number of edges (i, j) with i < j. The graphs
are undirected, so the edge (i, j) is to be considered equivalent to the edge (j, i);
for the sake of compactness of the input files, only the edges with i < j are
explicitly represented.
<k-th edge of node i> are lines of the form:

i j
where i < j, and (i, j) is an edge of the graph.

As an example, consider the representation of a completely connected graph
with four nodes, with an identifying number 1742:

G 1742
4
0 0.44 33 77 99
1 0.17 111 87 10
2 0.22 43 10 21
3 0.11 11 39 18
3
0 1
0 2

3



0 3
2
1 2
1 3
1
2 3
0

5 The output file format

As stated in the contest description, the contest participants may provide ei-
ther an explicit embedding, producing a vector for each graph, or an implicit
embedding, where for each pair of graphs g1 and g2, the value of their scalar
product is provided. Consequently, the format of the output file is different for
the two cases.

In either case, however, the output must be a text file using the ASCII
encoding; for the line termination, the software may either follow the convention
of the operating system it runs on, or the Unix convention of using a single Line
Feed character (code 10). Within each line of the file, the different fields are
separated by ASCII spaces (code 32).

5.1 Explicit embedding

In the case of explicit embedding, the output file must contain one line for each
graph in the input file. The format of these lines must be:

id x1 . . . xk

where id is the identifier of the graph, and x1 . . . xk are the components of the
vector embedding the graph. Each xi must be formatted according to the C
language rules for the input of floating point numbers.

The dimension k of the vectors can be freely chosen by the software, with
the only constraint that all the vectors in the output file must have the same
dimension.

5.2 Implicit embedding

For the implicit embedding, for each pair of graphs gi and gj (including the case
i = j) a scalar product must be computed. Each product is represented by a
line in the file.

Since the scalar product must be commutative by definition, for the sake of
compactness only the cases with i ≤ j are explicitly stored in the file.

The format of the lines is:
i j pij

where i and j are the identifiers of the two graphs (and i ≤ j), and pij is
the corresponding scalar product; pij must be formatted according to the C
language rules for the input of floating point numbers.

4



6 The performance index

In order to measure the performance of an embedding algorithm, we consider the
dataset divided in classes on the basis of the object represented in the original
image, and then use a clustering validation index to evaluate the separation
between the classes when represented by the vectors explicitly or implicitly
produced by the algorithm.

More specifically, we compute first the distances dij between each pair of
graphs; for the explicit embedding, dij is the Euclidean distance, while for the
implicit embedding the distance is computed as follows:

dij =
√

pii + pjj − 2pij

where pij is the scalar product between gi and gj .
Given the distances, the C index by Hubert and Schultz [5] is computed. The

C index is defined as follows: first we compute the set Sw of the distances dij

such that gi and gj lie in the same class; M is the cardinality of Sw. Then, the
sets Smin and Smax are computed taking respectively the M shortest distances
and the M largest distances among all the possible values of dij . Finally, the
index is computed as:

C =
sum(Sw)− sum(Smin)

sum(Smax)− sum(Smin)

Notice that the smaller the value, the better is the separation of the classes;
the index value is in the interval [0, 1] reaching 0 in the ideal case in which all
the inter-class distances are smaller than all the intra-class distances.

The C index has been chosen on the basis of the following considerations:

• it requires only the distances dij , and not the centroids of each class, that
would not be trivial to define for the implicit embeddings;

• the value does not change if all the distances are multiplied by a same
positive costant, so it is independent of the scale used for the vectors or
the products;

• it provides an integral measure that is not significantly affected by outliers.

Since we have three datasets, a way to combine the three corresponding in-
dices must be defined in order to obtain a single figure to evaluate an algorithm.
We have decided to use the geometric mean of the indices for attributing a
ranking to each algorithm.

Please remember that for the contest evaluation, three different sets of graphs
will be used from the ones provided in this archive, although they will be ex-
tracted from the same databases. The actual test datasets will be disclosed only
at the moment of the contest evaluation.

7 Software tools

In order to allow the participants to tune their algorithms and to check the
correctness of the file formats, we have included three scripts. They have been
realized using the Python programming language, and require Python 2.5 or 2.6
(they do not work with Python 3.x).

5



7.1 The performance index.py script

The performance_index.py script computes the performance index given the
output file produced by the embedding algorithm and the ground truth file for
the graphs.

For explicit embedding, the script must be invoked as follows:
python performance_index.py vector-file ground-truth-file

where vector-file is the file output by the embedding algorithm and ground-
truth-file is the file containing the ground truth for the used dataset.

For instance, if the output file for the ALOI dataset has been called aloi-1.out,
the script can be invoked as:

python performance_index.py aloi-1.out aloi-1.gtr

For implicit embedding, the script must be invoked as follows:
python performance_index.py -implicit prod-file ground-truth-file

where prod-file is the file output by the embedding algorithm and ground-truth-
file is the file containing the ground truth for the used dataset.

For instance, if the output file for the ALOI dataset has been called aloi-1.out,
the script can be invoked as:

python performance_index.py -implicit aloi-1.out aloi-1.gtr

Be aware that the algorithm used to compute the performance index keeps
the whole distance matrix in memory, so this script must be run on a computer
with a substantial amount of memory (say 1 GB).

7.2 The simple explicit.py and simple implicit.py scripts

The two scripts simple_explicit.py and simple_implicit.py implement a
trivial form of embedding, provided in order to check the format of the output
files and to test the computation of the performance index.

Namely, simple_explicit.py produces an explicit embedding in which for
each graph a two-components vector is generated, having as its components
the number of nodes and the number of edges in the graph. On the other
hand, simple_implicit.py produces an implicit embedding, using as the scalar
product between two graphs the product of their number of nodes.

Both the scripts require as their parameters the name of the input file and
the name of the output file. An example invocation could be:

python simple_explicit.py coil-1.grf coil-1.out
python simple_implicit.py odbk-1.grf odbk-1.out

References

[1] Contest on Graph Embedding for Pattern Recognition,
http://nerone.diiie.unisa.it/contest

[2] Amsterdam Library of Object Images, from the Research Group on Intelli-
gent Sensory Information Systems (ISIS) of the University of Amsterdam,
http://staff.science.uva.nl/~aloi/

6



[3] Columbia Object Image Library (COIL-100), Com-
puter Vision Laboratory (CAVE), Columbia University,
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php

[4] Object Databank, Center for the Neural Ba-
sis of Cognition (CNBC), Carnegie-Mellon University,
http://www.cnbc.cmu.edu/tarrlab/stimuli/objects/index.html

[5] L. Hubert and J. Schultz, Quadratic assignment as a general data-analysis
strategy, British Journal of Mathematical and Statistical Psychology,
vol. 29, pp. 190–241, 1976.

7


